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ABSTRACT

This paper is concerned with various questions about the existence and

uniqueness of solutions of Hamilton-Jacobi equations in RN. The issues

treated have to do with the interaction between structure properties of the

Hamiltonian (in particular, continuity and growth properties), properties of

the solutions and the existence and uniqueness. Uniqueness is exhibited in

appropriate growth classes depending on the Hamiltonian and existence is . -

exhibited in these classes when the assumptions are slightly strengthened.

Existence results are also given under assumptions for which uniqueness fails,

existence of minimal solutions is shown given the existence of a subsolution,

and examples are given to indicate the sharpness of some of the results.,
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REMARKS ON THE EXISTENCE AND UNIQUENESS OF UNBOUNDED P
VISCOSITY SOLUTIONS OF HAJ4ILTON-JACOBI EQUATIONS

Michael G. Crandall and Pierre-Louis Lions

INTRODUCTION

This paper deals with existence and uniqueness questions for solutions of general

first-order Hamilton-Jacobi equations. The development of the theory of "viscosity

solutions" has resulted in existence and uniqueness results of substantial generality for

solutions which are uniformly continuous (or UC) on RN: we refer the reader to M. G.

Crandall and P. L. Lions (6] and M. G. Crandall, L. C. Evans and P. L. Lions (41 for the

main properties of viscosity solutions including definitions, uniqueness for bounded

* uniformly continuous (or BUC) solutions and existence in model cases; P. L. Lions (18],

(19], P. E. Souganidis (22], Barles [1] for existence of BUC solutions; H. Ishii (13] -

[15], M. G. Crandall and P. L. Lions [8] - [11] for existence and uniqueness of UC

* solutions; P. L. Lions (181 for the relevance of viscosity solutions to deterministic

. optimal control theory and L. C. Evans and P. E. Souganidis (12] concerning differential

games.

However, for Hamiltonians such as those which occur in control theory or differential

games, dealing only with BUC or UC value functions requires somewhat stringent

assumptions. It is our goal here to broaden the scope of the theory and to point out

relations between structure properties of the Hamiltonian and naturally associated classes " " "

of viscosity solutions in which existence and uniqueness holds.
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Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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For the sake of simplicity we will consider two model problems, namely the stationary

problem

(SP)f u + H(x,Du) + f(x) = 0 in RN,

which we have indexed by an "inhomgeneous" term f r C(1N) for later convenience, and the

Cauchy problem
'%*

(CP) ut + H(x,t,Du) 0 in ,N , ],T),.

u(x,0) = (x) in R,

in which the Hamiltonians H(x,p), H(x,t,p) will always be assumed to be at least

continuous. In these problems, all the functions involved are real-valued functions of the

indicated arguments, x RN and Du stands for the gradient of u in the space variables x;

Du (ux .. ,uxN). The methods we present below allow one to treat more general

equations, for example, more general dependencies on u of the form H(x,u,Du) 0 in place

of (SP)f, but we will not pursue this straightforward matter here.

We next introduce a condition which will often be assumed and then illustrate the

nature of our results with some examples. Here and later, BR denotes the ball of radius R

centered at the origin and I I is the Euclidean norm on RN. A nondecreasing, continuous

and subadditive function m:O,-) - [0,-) satisfying miD) = 0 will be called a modulus and

a mapping o:[0,) x [0,-) + [0,-) for which r + u(r,R) is a modulus for R > 0 will be

called a local modulus. If H c C(RN x [O,T) ' RN) is a Hamiltonian, we say H satisfies (U)

(for "uniqueness") if there is a modulus m such that

(U) H(y,t,X(x - y)) - H(x,t,X(x - y)) 4 m(Xlx - y12 + Ix - yI)

for x, y r RN, A > 0, and t [O,T].

We are also interested in the local version of (U); that is there is a local modulus 0 such

that

(LU) H(y,t,X(x - y)) - H(x,t,(X - y)) < I(Ajx - Y
2 + x - YKR)

for R > 0, x, y BR X > 0 and t r [0,T].

For example, the Hamiltonian H(x,p) = sin(x 2)p in R x R satisfies (LU) but not (U),

Existence and uniqueness results using (U) and other hypotheses are given in Crandall and
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Lions [8] - (11] and Ishii (15] where one can find further commentary on this condition.

Examples given below (see also (11, Section 51) show that it does not guarantee uniqueness

by itself - other assumptions are needed. A generalization of (U) is given in [9], [10], .

but we will not employ this generality here in either its global or local form, as this

would obscure the ideas and may easily be done by the reader once the ideas are made (

clear. We will use the conditions (U) and (LU) in the stationary problem with the obvious

interpretation if H is independent of t.

Example 1: Assume that for some > > 0 H satisfies

(1) IH(x,p) - H(x,q)l 4 ulp - qi, V xp,q c 3 N.

Assume, moreover, that H satisfies (LU). Then there is at most one viscosity solution

u C C(UP) of (SP)f satisfying

(2) lim u(x)exp(-lxl/ul) oIxl .,, ..

If H also satisfies 7

(3) f sup IH(x,o)le r/Iidr < "

0 lxlr

then (SP)0 has a viscosity solution u c C(1e) satisfying (2).

Example 2: Assume that there is a C and 8 e (0, ) such that

(4) IH(x,p) - H(x,q)I 4 Cip - ql9 for pq c R and x, y c R,

and H satisfies (LU). Then there exists a unique viscosity solution u of (SP)f in

C(RN).

Observe that in this case no restriction is needed on the behaviour of the solution

for uniqueness nor on the growth of f for existence.

Example 3: Let H satisfy (LU). Assume, moreover, that there is a modulus y such that

(5) IH(x,t,p) - H(x,t,q)l I y(lp - qj(1 + Ixj)) for x,q,p rN, t [ 10,T).

Then for any V e C(RN) there exists a unique viscosity solution u c C(xN [0,T]) of

(CP) (i.e., the equation is satisfied in the viscosity sense on le x (0,T] and

u(x,O) = 9(x) in RN). Again, no restrictions are made at infinity.

-3-
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In the text we present many more resu -s of this kind, including existence results in

cases where nonuniqueness is possible and the existence of minimal solutions.

We also mention that the uniqueness statement in Example I and some particular cases

covered by Example 3 were first obtained by H. Ishii (13] by a somewhat more complicated - "

argument than that given herein. For problems arising in control theory, results analogous

to those of Example I are to be found in P. L. Lions [20] (as particular cases of optimal

stochastic control situations). Some of the results given below were announced in M. G.

Crandall and P. L. Lions [7].

Flrally we would like to mention that many of the results presented below may be

adapted to the case in which the equations are set in an infinite dimensional Banach space

V (instead of Rt)
•  

This can be done by combining the arguments outlined herein with those

given in M. G. Crandall and P. L. Lions [9], [10], [11]. Moreover, as mentioned above, the

role of X(x - y) in (U) and (LU) may be replaced by more general quantities as in these

works.

-4-
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1. LIPSCHITZ HAMILTONIANS AN-D THE STATIONARY PROBLEM.

wilIn this section we will assume that H satisfies (1) (or variants) and (LU) and we

wil beintresed n te eistnceand uniqueness of viscosity solutions of (SP)f. Let us

first observe that some limitations on the growth of solutions have to be imposed in order

to have uniiqueness. Indeed, the simple linear equation

(6) -iju' + u = 0 in R

has the distinct C 
1 

(and hence viscosity) solutions u S 0 and u Sexp(x/pJ). In view of

this example, it is natural to impose the following conditions on sub and supersolutions

(7) 17im u(x)exp(-IxI/j) -C 0
Ix!-

(8)lim v(x)exp(-IxI/Pj) 0

IX.
as is done below. In the following statement of our main result, r+ max(r.O).

Theorem 1.1: Let H satisfy (1), (LU) and f c C( 0).

Uniqueness; Let u,v fC(RN) satisfy (7) and (8). Let H satisfy (LU). Assume that

u is a viscosity subsolution of (SP)o and that v is a viscosity supersolution of (SP)f

in RN.Then for all x c RN

(9) (u- v) +(x) 4 f sup{f(y)+:Lx -1 yI p.t~e-dt
n

Existence: Let H(x,O) also satisfy (3). Then there exists a unique viscosity solution

u fC(R N) of (Sp) f satisfying (2).

Remarks: A uniqueness result of a sisilar form was first obtained by H. Ishii [13) by a

different method. Observ' also that the right hand side of (9) is bounded from 3sbove by

supf+.

Pr,',,f of the Uniqueness: Let x0 r R and let R < . ie are (g0ing tr compare u and

V (,n Ei~x h), the clren ball of radius R~ centered at x 0 . This is ichieved by use of the
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Lem"a I.. 1~let UV C C(RN) be, respectively, viscosity sub and supersolutiola of (SP)0

* and (SP)f. Let H satisfy (1) and (LU). Then we have

(u(x0)) - V(x0))
4 ( upff+(y):Iy - X01 4 jt~e-tdt

(10)

+ max ( sup (u - v) + sup f+ eRj

aB(xo#R) B(xGR)

We first complete the proof of (9) and then prove the lemma. We may of course assumle

that the right hand side of (10) is finite; this implies that

1)(sup f +)exp(-R n/U) *0U B(x ,R n P

* for some sequence Rn ~ On the other hand, in view of (7)-(B),

(sup (u - v)+) exp(-R/U) *0 as R*
aB(xo#R)

Therefore choosing R Rn in (10) and sending n * .we deduce (9).

We now prc-ie Lemma 1. 1: We set K max (sup (u - V) , sup f+ and
DB(xOR) B(x vR

00
introduce the function

w(x) =Kexp((ix -X01 - R)/u) I

R

+ (1/u)exp(lx xOI/U) f sup(f+(yh:(y -xO( sle-s/Uds

lx-xOI

One easily checks that w is the viscosity solution of

-M~I+ w - supjf'(y):jy - x0 l 4 Ix -x 0 j) in B(x0 ,R)

w =K on a~,R



* Next, we claim that v + w is a viscosity supersolution of (SP)0 in B(xo,R). Formally

* this is clear since

H(x,D(v + w)) H(x,Dv) - uDw? > -(v + w) -f -UIDwj + w )-(v + w)

To justify this one first replaces Ix -X 01 by (62 + 1. x0 12 ) 1/ 2  in the definition

of w, makes the corresponding estimate (now valid since w6 is C
1
) at points of

superdifferentiability of v + w and then passes to the limit as 6 + 0.

Observing that v + w - u on 3B(x 0 ,R) and applying the comparison results of [8],

we deduce that v + w ), u in B(x0.R), which implies (10).

Proof of the Existence: For R > 0 let ORbe a smooth function on RN supported in BRand

satisfying 0 < OR < 11Rz 1 on BR and IDR 2/R, and then define HR(x'P)

* (PR(x)H(x,P). We consider the approximate problem

u R + HR( x.DuR) 0 .

The Hamiltonian H Rsatisfies (1). Moreover

HR(yXdx - y)) - H R(xAX(x -y)) (TR(y) - .(x))(H(YAX(x -y))) -H(y,0)) +

(12)

Nowth frs R(x)((H(yX(x - y)) - H(x,Adx -y))) + (TR(X) - y(Y) )H(y,O)-

Nwtefrtterm on the right is at most .

(u/R)Ix -y11%(x -)

and if Ix - 1 1, the second is at most

2yA I x - y 12 + Ix - yl,2R + 1),

where a is the local modulus of H from (Lu), and the third term may obviously be estimated

by a multiple of Ix - yj. It follows that HR satisfies (U)). Since also

H R fUC(Re x BK) for all K > 0, the existence results of (8] apply and there are viscosity

solutions uR c BUC(Re) Of up + HR(X,DuR) =0. We now use the comparison result Lemma l*11

to compare U. and the solution w z- 0 of w + Hk(x,Dw) - HR(x,0) = U and let the radius in

(10) tend to to conclude that

(13) lu (x)I e1lxl /w fsplyo. I s/wdsR lxi fH~,):Jy 1

-8-



Let R, R', R0, R, > 0 and R, R' )R + R0 . Then for x e BR0, HR and HR. agree on B(xR")

and we may use Lemma 1.1 again with u,v = u R I, uR to conclude that

* -R1  .

fUR(X) - UR,(X)l sup tuR - uR*IC /U
3B(x,R l) R.R.

Using (13) in this estimate we finally deduce that

luR x) - uR,(xfl exp(R /1) f sup{IB(y,O))j~lyj 4 aleC'sR .0 "("R

I -  R 0) -

Because H(x,0) satisfies (3), we conclude that the uR form a Cauchy net in C(BR0) as R . - -
0

for any R0 > 0. By the standard stability results for viscosity solutions ([6]), we deduce

that uR converges uniformly on bounded sets to some viscosity solution u of (SP)0 . In

addition, letting R * in (13), we see that u satisfies (2).

Remark: Considering the equation

-MjDuj + u f(x) in

one sees (again) that uniqueness if false without the condition u(x)exp(-Ixl/u)-Y'> 0 as

jxl + - (take f = 0, u(x) = explxl/u or u = 0) and then that existence in this class may

fail if f does not satisfy (3).

We consider next a slightly more general situation where (1) is replaced by

(14) IH(x,p) - H(x,q)l 1 *(lxl)p - q(. V xp,q E R"

where 0 is continuous, increasing, I(0) 0 and 0 satisfies

(15) f +a
1 (s)

Then the arguments used above are easily adapted to prove the following result:

Theorem 1.2: Let H satisfy (LU), (14) and f e c(RN).

Uniqueness: Let uv r C(O
N
) satisfy respectively

1-1 da X do . .

7) lira u(x)expf- -C-21 0, li v(x)exp{- 0o

x IW7- 1

-9-, -' t:_r
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Let ui be a viscosity subsolution of (SP)0 and v be a viscosity supersolution of (SP)f. P
Then for all x c R

t

(- )(x) f sup{f+(yk:IyI tie lx ( (t

Lxi1

Existence: In addition, let

t
*(17) !sup{IH(y,0)l:lyl 4 tlexp(- f ds dt <

fl0s) 0(t)

* Then there exists a unique viscosity s~lution uc C(FRN) of (SP)0 satisfying

limur u(x)exp{- fx d()



II. UNIFORMLY CONTINUOUS HAMILTONIANS AND THE STATIONARY PROBLEM.

We now turn to the case when H satisfies (4) or, more generally,

(19) IH(x,p) - H(x,qfl 4C y~fp - qj), V p,q e R

'* . -•

where y is a modulus. We assume that the inverse v of y satisfies

f do ds
120)~ s(s)

Of course if y(r) = Cr with C ) 0, 0 < a < 1, then (20) holds. The main result below

asserts existence and uniqueness without any conditions at infinity: such results may be

expected in view of the trivial case H(x,p) S H(x).

Theorem 11.1: Let H satisfy (LU), (19), (20) and f e Clsp).

Uniqueness: Let u,v e C( 0) be, respectively, viscosity sub and supersolutions of

(SP)0  and (SP)f. Then

(21) sup (U-V) < sup f
N N
R R

Existence: There exists a unique viscosity solution of (SP)f.

Remarks: Of course, one could formulate results which unify Theorem I.1 and Theorem

II. 1. Roughly speaking, if (20) does not hold (as is the case if y(r) - hr), then

H(x,O), u, v have to satisfy certain growth conditions at infinity which are revealed by

an examination of the proofs we present.

Sketch of Proof: We will only prove (21), which follows from a simple application of the

lemma below. The existence is also obtained in a similar way to the above by use of the

lemma. Let R > 0 and denote by wR the function defined by

ds

(2) R =R x for 0 xl x Rj .w((2I) v(s)

One checks easily that wR is a viscosity solution of

(23) -'y(IDwRI) + wR =0 in BR, wR(x) *+ as jxf R-

- - - -



Therefore, one has

Lemma II.1: With the notations and assumptions of Theorem 1.I, for all x0 c me, R > 0

+?
(24) (u - v)(x) C WR(jX - x0I) + sup f+, V x c B(x 0 ,R)

Blx0,R)

Next, observe that in view of the explicit formula (24) we have: wR(IxI) 0 as R,

jx , if R - xl + -. In particular wR converges uniformly to 0 on compact

sets. This combined with (24) yields (21).

Remark: One sees in the above proof the basic role played by the solution wR  of (23),

which is an HJ equation with infinite boundary conditions. In a different context, H.

Brezis [3] uses a similar method to obtain uniqueness results without growth

restrictions. Finally, let us observe that for more general nonlinear partial differential

equations, the possibility of prescribing infinite boundary conditions as in (23) is

studied in J. M. Lasry and P. L. Lions [16], [173. In particular, using the results and

methods of (16], (17] one sees that for any (say smooth) bounded open set n and bounded

continuous function f on 0 there exists a unique viscosity solution of

-1(jDwl) + w = f(x) in Q, w + +- as dist(x,M) + +..

In addition, w is locally Lipschitz on Q and if gn + 3 the corresponding solutions
n

wn converge to 0 uniformly on compact sets.

We next formulate (without proof) an extension of (19)

(25) IH(x,p) - H(x,q)l < '((Ixl)lp - qj), V x,p,q c

where y satisfies (20), 0 is continuous, increasing, f(0) > 0 and 0 satisfies (15).

Theorem 11.2: Let (20) and (15) hold, f f C( N), and H satisfy (LU) and (25).

Uniqueness: Let u,v c C(RN ) be, respectively, viscosity sub and supersolutions of (SP)0  -

resp. (SP)f with f c C(RN). Then (21) holds.

Existence: There exists a viscosity solution of (SP)f.

-12-
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III. POWER-LIKE HAMILTONIANS AND THE STATIONARY PROBLEM.

Motivated by the case of an Hamiltonian of the form H(x,p) A= l with mi > 1,

A >0, we consider the case of a Hamiltonian satisfying:

(26) 111x,p) - H(x,q)j 4 fCIpj-' -+ j_ + clp - qi, 9* x~p~q iE

for some constants COIC > 0. We will consider viscosity sub and uupersolutions which are

Lipschitz locally in RNand satisfy

(27) jDuj 4 C11xI(m-I) + C. jDvi c2 1xI~m' 1 3 ) + C a.e. on R

where C,C1 ,C2 > 0 and m' - rn/Cm -1.

The main comparison result is then:

Theorem 111.1: Let (26) hold. let u and v be locally Lipschitz on IP and, respectively,

viscosity sub and supersolutions of (SP)0 and (SP)f with f c C(10). Assume that (26) and

(27) hold and C0 (C M
1 

+ Cr-1 ) < 1/rn'. Then .
sup Cu -v) 4supf+

RN RN

Remarks: First of all we could replace 1jm by more general convex, increasing

functions fl(fpj. In fact, the proof below uses only (27) and

*(28) jH(x,Du) - H(x,Dvfl r (C + Bjxj)ID(u - v)l a.e. in

* for some C > 0, 9 c (0,1/rn'). Clearly (26) and (27) yield (28) with

e6 C0 (CMf 1  CT1 ) The assumption that (28) holds with e c (0,1/rn') is nearly optimal

in view of the following example: If H~x,p) = .(/m)Iplm then u =_ 0 solves (sP)0

* while u~x) - (1/mn)Ix~rn' also solves (SP)o. Observe that (28) holds with e - 1/mn..

Proof: Again, the proof is quite similar to those sketched before. One chooses

* ( CCCC'M-1 + r-1
(C l +C 2  )1/m') for which (28) holds and considers the solution wR of

-CC + eIxI)IDwRI + wR - 0 on B, wRB 1. The viscosity solution of this problem is

given by wRX)= c++e81/e By the comparison results on B we have

(u -v)+Cx) 4 Ma~ f + + wRX s Cu-v on

B

-13-
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Finally, observing that lu(x)I,Iv(x)I 4 C + Clxl
m ' 

and that - > m we deduce that for

bounded x, wR(x) Max (u - v) + 0 as R + -. Thus, we conclude by letting R go to +".

We now conclude this section with an existence result corresponding to the above

uniqueness result

Theorem 111.2: We assume (26) and

(29) H(x,p) - H(x,0) . .1pl
m , 

V (x,p) e RN, for some a > 0

(30) IH(x,O)l = o(Ixlm ') as lxI +

Then there exists a unique locally Lipschitz viscosity solution u of (SP)0 with the

property that for all e > 0 there is a C such that

IDu(x)l I lxl (m '- ') + C. a.e. on iN.

Remark: It is possible to replace (29) by

(291) H(x,p) - H(x,O) 4 -.lplm, V (x,p) f RN, for some ax > 0.

Proof: We first build subsolutions of (SP)0 . For each c > 0 with C. denoting a

positive constant to be determined below we set

(x) = Cm- ,..,

-E m

Then u satisfies 97
-F

H(x,Due) + u 4 CIDI
m 

+ C + H(x,0) + u

-

Cc1X + C + o(IXIm) -C XIM C

and thus we may choose C large enough so that for E small enough u is a viscosity

subsolution ,t (SP)0. It is clearly enough to show that there exists a viscosity solution

oif (SP)0 satisfying u 0 u . Indeed the equation and (29) yield that u is locally 31

Lij.scjhiz and

-14-
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a (ul -H(x,O) -C ( o xl ) + 1XI ' +C
moC

and thus for E small enough u satisfies (27) with C1  arbitrary small. Applying the

uniqueness result, we are then able to conclude. Fialteeitneofavsoiy~ ..

solution of (SP)0 above u C is a very special case of the results proved in Section V.

- 15-
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IV. REMARKS ON THE EXISTENCE OF BUC and UC SOLUTIONS OF THE STATIONARY PROBLEM

In this section (SP)0 will simply be denoted by (SP). It was proved in M. G. Crandall

and P. L. Lions [8] (see also H. Ishii (15]) that there exists a unique viscosity

solution u of (SP) in UC(0) provided H satisfies (U) and

(31) H c BUC( x B R) for R > 0.

Related results were previously obtained by G. Barles (1] in the class BUC and then

H. Ishii (13] in the class UC under more restrictive assumptions.

In the papers H. Ishii [15] and M. G. Crandall and P. L. Lions [9], (10], [11] the

requirement (31) is replaced by a (somewhat confusing) array of more general substitutes

which we will not detail here. In particular, the substitutes separate various roles of

(31) as they pertain to uniqueness questions and estimates on moduli of continuity. It is

our goal here to obtain existence in UC( E) or BUC(AN) without (31). In order to do so

we will need to supplement (U) in some way, and we do so quite simply. The simplicity of

the assumptions, compared to the works mentioned above, is possible because we give up

uniqueness.

We will use the following assumptions: Either

N(32) H(x,0) c BUC(R

or for some 6 c (0,I) and modulus p

(33) H(y,)(x - y)) - H(x,X(x - y)) 4 DAIx - y12 + U(x - YI), V x,y,p r l .

(This is just one way to insure the existence of global supersolutions of an associated

problem - see [10].)

Thp existence result is:

Theorem IV. 1: Let H satisfy (U).

1) If (32) holds, then there exists a viscosity solution u c BUC(0N) of (SP).

2) If (33) holds, then there exists a viscosity solution u c UC( 0) of (SP). In

addition, if 0(r) 4 CrO for some C > 0 and o r (0,1), then this solution lies

i G I

. . .. . . . .. . . . . . . . ." .°.
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Example IV. 1: If H(x,p) =-8Cx,p) - xj, x,p e it". The above result shows that if

8 c (0,1) there exists a viscosity solution u (which belongs to C 0' 1(1')). In view of

the results of the preceding sections, u is unique. It is given by u(x) ~ li
-0-

Now, for 8 - 1, if there exists a viscosity solution u of (1), then using the relations

between linear equations in viscosity form and integral equalities proved in N. G. Crandall

and P. L. Lions (4], we deduce that for all x c R, t 0

(34) u(x) -u(etx)e-t + tixi

Thus, if u were a uniformly continuous viscosity solution of (SP) for 8 1 (34) will

yield for all t ;P 0

tixi 1.- + C + [Cjetxj + Cle-t 1 Cjxj + C

which is impossible. Therefore for 9 1 there does not exist a solution of (SP) in

UC () 3m. S'

Example IV.2: Take H(x,p) -- x TTfor x,p c R. Then u 0 is a solution of (SP)

x*but u(x) = + is also a Lipschitz continuous viscosity solution of (SP). Observe
1 xT

that H satisfies (32). Observe also that H satisfies (33) for all e L, (0,1) with

* u(r) =Cor. Thus we do not have uniqueness in BUCCRN) or even in W"' U0).

Proof of Theorem IV. 1: Step 1: We treat the case when (32) holds. let

M sup IH(x,D)I Truncating H by IM4, we may assume without loss of generality

that H is bounded by M provided we prove the existence of a viscosity solution in

BUC(WO) bounded by M. Then, let 9 . c D(SN) satisfy OR 1 on BR' 0 OR~ 1, and

* Dv~i < 1/R. We consider HR(x,p) = yR(X)H(x,p). Clearly, HR f SUC(RN x B.), JHRJ 4 N and

(35) HR(y,X(x - y)) - HR(xXOC - y)) < m(AJ. - y12 
+ lx - yj) - (M/Rflx - y).

Hence, by the results of (8], there exists a unique viscosity solution uR Of

(36) HR(x'DuR) + uR = 0 in 3

and luRi r M in N.Next, we go through the proof of M. G. Crandall and P. L. Lions (8]

to estimate the modulus of continuity of uR and we observe that since

uR(x) -uR(Y)! 4 2m for Ix -yj 1 and (35) holds, we obtain a uniform modulus of

-17-



continuity on UR. Therefore, uR (or a subsequence) converges uniformly on bounded sets

* to a u c BUC( N) which is a viscosity solution of (SP) and which satisfies Jul f M.

* Step 2: We treat the case when (33) holds. We introduce for R <

HR(x'P) = R(x)f~ax[Min(H(x,p).R),-R]

where is defined as in Step 1. Then we have

*(37) HR(YX(x -y)) -HR(x'A(x -y)) C()Al4x -Y1
2 

+ Ilx -yI) + Ix -yI.

Hence, there exists a viscosity solution uR c BJC(RN) of (36).

I Next we go through the estimates on the modulus of continuity of u in [8) and we

observe (using (37) and the subadditivity of wi) that we have

2 H(xC -yl )~- H R(y.' x 1) + C + Clx-

S-COIx - 1 + C + CIx - 1 POX - llx

C + C(1e)lx-y A POX-yl) 0

*on if C is large enough. Hence, for all e > 0, there exists a CE > 0 such that

I uf(X) - uR(y)l _ +CX - YI' V(x,y)

and thus uR has a modulus of continuity uniform in R.

Next, we consider a maximum point x Of uR(X) -
2  

We have, using the uniform

modulus, Ix! R u ( -uR(O) 4 C"1 + lxi), for some C independent of R and thus

Ix; C (where C will denote various constants). Since up is a viscosity solution of

(36)b_

H R(x,x) + u R(X) < 0

* and we deduce finally

uR(0) u Rx + C 4 -H R(-X,;) + C < C

similarly one proves that u,(O) is bounded from below independently of R.



Therefore, UR (or a subsequence) converges uniformly on compact sets to some

u C UCCRN which is a viscosity solution of (SP) by the standard stability properties of

viscosity solutions.

fl Remark: In fact, the proof in Step 2 still works if we replace (33) by (U) provided that

(38) li-m m(r)rl 'C1
r+O+

-19-
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V. EXISTENCE OF MINIMAL SOLUTIONS OF THE STATIONARY PROBLEM

In this section we consider Hamiltonians H(xtp) c C(11N x RN) which satisfy --

(39) H(xp) - H(xO) + + as I 1 uniformly for x bounded.

Theorem V.o1: We assume (39) and that there exists a viscosity subsolution u F C(t0) of

(SP) 0 1 Then there exists a viscosity solution u r C(R ) of (SP) satisfying u > u which

is minimal in the sense that if v is another viscosity soltion of (SP)0 satisfying v ) u,

then v > u.

Re_emarks: i) In view of (39), any subsolution of (SP)0 is locally Lipschitz on

ii) (SP)0 may not have a viscosity subsolution as is shown by the following

example: let H(x,p) = (1/2)pi1 2 
+ IxJ

2 
and assume that v is a viscosity subsolution, that

is

v + 1DvI2 _1x12

in the viscosity sense. Since we clearly must have v I -Ix1 2 
it follows that for large n

we may choose points x n of least modulus so that V(xn) = -n
2 
and these points satisfy

2 2lXnl 4 n. It follows that v varies by at least -(n + 1) + n = -2n - 1 on the part of the

ray through the origin and xn+1 which joins xn+1 and the sphere lx1 = n. Moreover, since

IXnI n, for any 5 > 0 we have lXn+11 - IXnl 1 1 + 6 infinitely often and we assume that

this is satisfied for the n's we deal with below. It follows that the least Lipschitz

constant for u on any part of the annulus A = {x:Ixnl < lx1 < IXn+1l) containing the ray

mentioned above is at least (2n + 1)/(1 + 6). Therefore the superdifferential D+u of u has

values of at least this modulus on this annulus (because a bound on values of D
+ 

is a

Lipschitz constant (4] ). Let y r A and p e D +u(y) satisfy

JPJ > (2n + 1)/(1 + ) ,

Since u is a subsolution we conclude that

-(n + 1)2 + ((2n + 1)/(1 + 6))
2  

u(y + p1 2  -y1 2  
0 0

which is impossible if 6 < I (and 5 is at our disposal) and n is large.

Using more refined arguments, we can give a sharper nonexistence analysis for a class

of examples of this sort. Consider the problem

-20-
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u + DUol"' = f(x) "

where f(x) e C(UN), m > 1 and

lim sup f(x) ix (M -m)(1a')

where m' = m/m-l). We claim there exists no viscosity (sub) solution u of this problem.

Indeed, subtracting if necessary some large constant from u we may assume that

f(x) C -Xlxl m ' on R with X > (,I) - ( 1 m ' )

Then if there were to exist u viscosity subsolution of (SP)0 , the equation would yield:

u ( f on 1N. Thus if fn F BUC(LN), fn 4 0 , fn f on B fn + f on RN and if --
n n

Un is the viscosity solution (in BUC(O)) of n.n

ID [nim +un fn in ON
a

then we know (cf. P. L. Lions [18]) that un is given by

if" If( moa e-td/t-

un(x) inf + + e Ikt  dt/X C C (1 0,-[,R"), x0 = X1

= m fo t n w fn t
0

Choosing jx , Xt  xet/m '  if t tn  m'log n, Xt  Xt for t "t we find

tn 1

unCx) 4 I {- Xe t + (-1).4'et}e - tdt -t {X - '.
0 M."

and thus un + for jxj - 1. On the other hand since un c BUC, u 4 f and thus

u - -" as 1x1 + -, we have u 4 un for IxI large and by the standard comparison

results u ( un on R1. The contradiction shows that there is no subsolution.

Proof of Theo-em V. 1: We first consider the problem

(40) H(x,Du) + u = 0 in BR, 0= u on B R .

for R < . Clearly, u is a viscosity subsolution of (40) and since H satisfies (39),

we may apply the existence result of P. L. Lions (19j (see also G. Barles [2] ) to deduce

-21-
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the existence of a viscosity solution uR of (40): in addition uR is Lipschitz .

continuous, UR u on B., and thus uR(x) increases with R. Then, for any fixed

R0 and R > R0 , we deduce from (39) and (40)

uR -inf(H(x,p):lx f RO, p c 3) on BR 0

Therefore uR is uniformly bounded in R on bounded sets of RN. Using once more (39),

(40) we deduce that uR is bounded in W"(BR ) for any fixed R0 < -. Therefore u,

converges to a limit u uniformly on bounded sets and u is a viscosity solution of 5
(SP). Finally, if v is any viscosity supersolution of (SP)0 above u, it is in

particular a viscosity supersolution of (40) and v > u on 3BR. Therefore, v ) uR on

B R and letting R go to +-, we deduce v > u in that is, u is the minimal

solution above u.

-22-
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7V

VI. THE CAUCHY PROBLEM WITHOUT CONDITIONS AT INFINITY.

We now consider the Cauchy problem (CP). Our main result is the

Theorem VI. 1: let H satisfy (5).

Uniqueness: let H satisfy (LU) and let u,v cC(VN [0(,T)) Le, respectively, a viscosity o i.

subsolution of

(41) ut+ H(x,tDu) 0 in x (0,T)

and a viscosity supersolution of

(41)1 Vt + H(x,t,Oxv) + f(x.t) =0 in ON E(0,T].

Then we have for all t c 0,T]

+ t
(42) sup (u(*,t) -v(*,t)) 4 sup (u(,0) -v(.,0))+ + f sup f(.,s) ds

NN 0

Existence: Let H satisfy (LU). If 9 C(RN), then there exists a unique viscosity

solution u c C(11N x [0,T]) of (CP).

Remark: We could replace 1 + lxi in (5) by *(Ixl) where f is continuous, positive,

increasing and f-j -j- = 
FS

Sketch of Proof: Since most of the proof of Theorem VI. 1 is a straightforward adaptation

of proofs presented in the first three sections, we will only prove the uniqueness part for

f -0. The main point is the following lemma: K .
Lemma VI. 1: With the notations and the assumptions of part 1) of Theorem VI. 1 and if

f E0, we have for all x c I0, t c [0,T] and E >- 0

(43) (u - v)+(x,t) < sup{(u - v)+(y,0):fyl 4 (1 + jxI)e Ct - 1} + 2ct

where Ccis a constant large enough such that y(r) 4 E + Cc .

Proof: To prove lemma VI. 1, we fix xo c r to c (0,T] and we are going to prove (43)

with x =xo, t to. To this end, we set R =Log(l + Ix0i) + C Eto and we consider

w (x,t) =exp{-' [Log(1 + lxi) + C t -RI}

-23-



where 5 > 0. One checks easily that w is a viscosity solution of

C I+ I x DwI 0 i n RNx ) 0,-

and w5  0. Furthermore, if Ah = (xlt) RN x (0,T), 1 + lxi < exp(R + h -Ct1 for

h >0, we observe that w6 -~+ on a~ &n (RN ( 0,T)) as 6 + 0+. Next, using (5), we

deduce from the usual comparison argument that for any fixed h and for all 6 small

* enough

(u -v)(x,t) -2et w w(x't) 4 5up{(u -v)+(y,0),IyI 4 eR -

*for all (x,t) f A.h Then, remarking that w 6(x,t) *0 as 6 + 0+ if (x,t) c Ai 0 we

* deduce

+ R-
(u -v)(x,t) 4 2Et + supfu -v) (y,0)/tyl <e - f, V (x,t) C A B

We conclude by observing that (x0,t0 ) &0 and that eR I (1 + lxohe 0  
1.

-24-
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VII- REKARYS ON THE CACH PROLEM

We wish to present in this section the analogues of the results given in Sections III,

IV. We begin with the results corresponding to Section IV.

Theorem VII.1: Let H satisfy (U) and I c =e3~)- Then there exists a viscosity solution

u of (CP) whic'. is uniformly continuous on Ee uniformly for t C (0,T].

Remarks: i) If H(x,t,0) is bounded on Ix [0,T], then we may choose u so that it is

also bounded.

ii) If (U) is strengthened to L

H(y,t,)X(x - y)) - H(x,tXx -y)) 4 C)Ix -y1, + C~x -Y1,

for some C > 0, ct c (0,1], then we may choose the solution u so that it is H51der

continuous in x of exponent a, uniformly in t c [0,T].

Proof: We follow the approximation procedure introduced in the proof of Theorem IV. 1 in

Section IV and it will suffice to explain how to obtain enough a priori estimates which

depend only on m in (U). First of all, we claim that one may obtain an estimate on the

modulus of continuity of u(*,t) uniform in t, which depends only on m. Indeed,

following the proof in (8], we just have to exhibit convenient supersolutions of

Wt + H(x,t,Oxw) - H(y,t.-Dyw) - 0 on x(0T

Given c > 0 choose 5 > 0, Cc a, 1 and C6 such that m(6) 4 e,

qx - 9(yfl 4 E + C£Ix -Y1, .
and m(r) Csr for r > S. Put X max(2C6 , 1) and

w(x,y) W ~ + t) + CLIx -y~ext.

One easily justifies the following computation in the viscosity sense:

wt + H(x,t,Dxw) - H(y,t,-Dyw) ), E + eCI -yet m(+CeKt )Ix -yI)

and the right-hand side is nonegative if IX - yI(1 + C~eKt) 4 6 since c ) i(S) and it is

nonnegative if Ix - yI C + C eKt) )6 since in this case

m((1 + C~e t)Ix - yI) 4 C6(1 + C~ex )fx - y( 4 2C6Cce'tlx -yJ 4 KC Ce't~x -y1.

We conclude that the (approximations of) u satisfy

J u(x,t) -u(y,t)l 4 e(1 + T) + Ce~tIx
-25-
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where K and Cc depend only on c and m as in (U). This yields the modulus of continuity

with respect to x uniform in t as claimed.

To obtain a modulus of continuity in t for x bounded, we may argue as follows:

Fix x c BR and c > 0 and set

me(t) max (u(y,t) - x2 ) -x •'.

yea

Since u is uniformly continuous in the space variables, m. is well defined and continuous

on [0,T]. We next claim that there is a C (depending on R and e) such that

(44) mc ( C on (0,T)

in the viscosity (and, by linearity, distribution - see [4]) sense. Thus

(45) mE(t + s) 4 me(t) + Cs for 0 4 t 4 t + s 4 T.

Indeed, if C C
1
((0,T)) and m. - 'k has a maximum at c e (0,T), we choose which maximizes

u(.,t) - (1/2c)I. - x12 
and then we have -

(46) '()+ H(;,E, -!(x - x)) < 0.
C

However, the uniform continuity in x already proved provides an estimate

1 12 ,u- j
-lx- xl u~xt) - u(x,t) + Ix- x

so - xl 4 Cc 1/2 with (another) constant C independent of t, x, R, C. Since H is bounded

on bounded sets, (45) implies (44). In particular, choosing c = 1 we deduce that

u(x,t) 4 CR + m 1(0) 4 CR + V(x)

for t c [0,T] and x r BR, where CR denotes various constants depending on on R. A lower

bound is obtained in the same way.

Next, we see that for x r BR and 0 4 t 4 t + s 4 T and X a modulus in x uniform in t ..

(47) u(xt + s) 4 C,,RS + m,(t) f CeRs + u(xt) + su3(X(X) - X2/2)

where Cc,R denotes various constants depending on E and R. Choosing c and then s small

shows that (u(x,t + s) - u(x,t))+ is small for s ) 0 small. A lower bound is obtainable i

a similar way, establishing the continuity in t.

-26-

. . .- ,.

S ......... ..

'........... .. .. . ....................,-"'-.-.. -... "_'-'._' ," _'. ' _ ' tJ•... ..... . .......... ......... . . .



Our next and final result concerns the analogue of the results of Section III. We Y.*
will assume that for some m > I H satisfies

(48) IH(xttp) - H(x,t,q)I ( C0( I + ~1 m-1 + Jq~m-lflp - '-I-

for all x~p,q r le, t c [0,T].

We will also consider viscosity sub and supersolutions u,v c CCRN x [0,T] ) of the

equation

ut + H(x,t,Du) =0

which are locally Lipschtiz continuous on 10 (0,T] and satisfy .
(49) IDul -C C(1 + lxI)D'-ltU, J~v 4 C(I + IxI)m.-lt-P

for some 0 4 1 <u -1.

Theorem VI.2: Let H satisfy MLU) and (48). Let u,v satisfy the preceding conditions.

Then we have: sup (u - V) +=sup (u(-,(O) - v(.,O))

Remark: If H(x,t,p) = p m and if 9 c C(ON) satisfies

(50) lim qp(%)1x1"1  0

. ." ." .-

Then, using the Lax-Oleinik formula (see P. L. Lions [18]), we see that

u (x ,t ) i n f N. 

.(Y 
) + 

..-
Ix y M t 1

rmn

defines a viscosity solution of (CP) in C(th x [0,T) for all T < r t Furthermore u is

locally Lipschitz in N x (0,:) and

IDu(x,t) l Co + xp)m
mt lm, V +T < a.e. in Nx (0,T)

for all T < -. Similar existence results for more general Hamiltonians may be obtained

using the regularizing effects proved in P. L. Lions (21].

Sketch of Proof: Since we have already sketched many similar proofs, we just outline the

arguments. We first observe that combining (48) and (49) we get

IH(x,t,Du) - H(xtDv) I 1 C( 1 + x)t- t"D(u v)

-27-



where 0 < 8 < 1. Next, we consider for 6 > 0, R >0

w 6 (x,t) = expt-l (LOW( + lXI) + C t I- R

and we check that w6  is a viscosity solution of

-C(1 + Ixt- IDw 1 =0 in RN (0,-).

This yields easily that (u -V) 4 w; by appropriate choices of R, we conclude upon

letting 6 go to 0.

-28-
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